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ABSTRACT
This note provides an elementary derivation of the basic reproduc-
tion number and the effective reproduction number from the dis-
crete Kermack–McKendrick epidemic model. The derived formulae
match those derived from the continuous version of themodel; how-
ever, the derivation from discrete model is a bit more intuitive. The
MATLAB functions for its calculation are given. A real case example is
considered and the results are compared with those obtained by the
R0 and the EpiEstim software packages.

ARTICLE HISTORY
Received 18 March 2021
Accepted 25 October 2021

KEYWORDS
Basic reproduction number;
effective reproduction
number;
Kermack–McKendrick
epidemic model

Introduction

In addition to the incidence and prevalence [1,2], the reproductive number is one of the
most useful epidemiologic metrics for monitoring and controlling the development of an
epidemic [3–9]. While the incidence and prevalence tell us something about the size of the
epidemic, the reproduction number informs us of its spread rate.

There are two kinds of reproduction numbers: the basic reproduction number, R0, and
the effective (or time-varying) reproduction number, R. R0 is defined only at the beginning
of an outbreak and ‘represents the number of secondary cases that one case can produce
if introduced to a susceptible population’ [10]. R is defined over the entire period of an
epidemic and represents ‘the average number of secondary infectious produced by typical
infective during the entire period of infectiousness’ [11]. Neither R0 norR is a natural con-
stant, because their value depends on the epidemicmodel used. For variousmodels used for
analyzing properties and for calculation of R0, see [12–24]. For properties and calculation
of R, see [25–30]. For critical consideration of R0, see [31] and references therein.

We first review the formulas for calculating R0 and R based on the continuous Kermack
and McKendrick epidemic model [32,33]. Heesterbeek and Dietz [14] used the following
form of the model

I(t) = S(t)
∞∫

0

A(τ )I(t − τ) dτ , (1)
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where I(t) is the incidence rate, S(t) is the density of susceptibles in the population, A(τ )
is excepted infectivity of a person with infection age τ . They define

R0 ≡ S0

∞∫

0

A(τ ) dτ (2)

and derived the following expressions

1 = S0

∞∫

0

A(τ )e−rτ dτ (3)

where S0 is the initial density of the susceptible population and r is the natural growth
rate. From these expressions, Wallinga and Lipsitch [34], by introducing generation time
distribution

w(t) ≡ A(t)∫ ∞
0 A(τ ) dτ

, (4)

deduce a formula for calculation of R0, which has the form

1
R0

=
∞∫

0

w(τ )e−rτ dτ . (5)

For practical calculation, they offer a discrete version of this formula implemented in
the R0 package [35].

It seems that Fraser [26] was the first who deduce a general formula for calculation of R
from the Kermack andMcKendrick model. He starts with a generalization of Equation (1)
in the form of a continuous renewal equation

I(t) =
∞∫

0

β(t, τ)I(t − τ) dτ , (6)

where β(t, τ) is the transmissibility. He defines the case reproduction number Rc(t) as ‘the
average number of people someone infected at time t can expect to infect’, thus

Rc ≡
∞∫

0

β(t + τ , τ) dτ , (7)

and the instantaneous reproduction number R(t) as ‘the average number of people some-
one infected at time t could expect to infect should conditions remain unchanged’,
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expressed by the formula,

R ≡
∞∫

0

β(t, τ) dτ . (8)

Assuming that β(t, τ) can be factorized as

β(t, τ) = R(t)w(τ ), (9)

he deduces

R(t) = I(t)∫ ∞
0 I(t − τ)w(τ )dτ

, (10)

and from this formula, a discrete version of the formula for calculation of R and Rc. The
method was implemented in the EpiEstim package [36,37].

We will follow the above ideas, but, unlike the authors mentioned, we will derive
formulas for calculating the reproduction number from the discrete form of the Ker-
mack–McKendrick epidemic model. In particular, this derivation does not need the fac-
torization assumption Equation (9), and the derivation of the formula (4) for generation
time is a bit more intuitive. For other discrete models, see [38] and references therein.

Kermack–McKendrick epidemic model

Let In,k denote the number of infectious peoples at calendar time n and infection-age k. Let
In,0 be the number of peoples who became infected at the calendar time n. We call them
nth generation. The transition process of the epidemic for the nth generation is as follows

In,0 → In+1,1 → · · · → In+k,k → · · · ,

and the whole epidemic process may be schematically represented in this way [32,33]:

t →

τ

↓

k/n 0 1 2 3 · · ·
0 I0,0 I1,0 I2,0 I3,0 · · ·
1 I1,1 I2,1 I3,1 ↘
2 I2,2 I3,2 ↘
3 I3,3 ↘
... ↘

Here, t is calendar time and τ is the infection age.
Two hypotheses govern the epidemic process. The first one is that a decline in the

number of infected in nth generation depends only on age. Thus, we have

In,k − In−1,k−1 = −ψk−1In−1,k−1, (11)

where 0 ≤ ψk−1 ≤ 1 is the removal rate. From this, it follows that

In,k = BkIn−k,0. (12)
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Anon-dimensional parameterBk ≡
k∏

j=1
(1 − ψk−j) can be interpreted as the probability

that an individual of age k is still infectious [3,19].
Before stating the second hypothesis, we decompose In,0 to local (Ilocaln,0 ) and imported

(Iimported
n,0 ) cases [37]:

In,0 = Ilocaln,0 + Iimported
n,0 . (13)

The second hypothesis assumes that In,0 is proportional to the number of contacts each
generation has with all susceptible left in time interval n [32]:

Ilocaln,0 = Sn
n∑

k=1

φkIn,k (n = 1, 2, . . .), (14)

where φk is the infective rate at age k and Sn is the number of susceptible individuals at the
time interval n. Using Equations (12), (13) and (14), we obtain

In,0 = Sn
n∑

k=1

AkIn−k,0 + Iimported
n,0 (n = 1, 2, . . .), (15)

whereAk ≡ φkBk is the infectivity at age k [19,39]; i.e. the number of new infectives in unit
time per ineffective contact. Note that the Equation (15) assumes that ‘an individual is not
infective at the moment of infection’ [32], so, starting at the 0th generation, we assume

I0,0 = κI0 + Iimported
0,0 , (16)

where κ ≥ 0 is a constant and I0 the number of infected individuals initially. Equations
(16) and (15) represent the discrete Kermack–McKendrick epidemic model that we will
use to derive the formulas for calculating R0 and R.

Basic reproduction number

To derive the formula for calculation of R0, we start with the epidemic process for 0th
generation:

I0,0 ⇒ I1,1 → I2,2 → · · · .
Thus, the number of infectious individuals of 0th generation at each time interval is, by

Equation (12),

I0,0 ⇒ B1I0,0 → B2I0,0 → · · · .
and the new infected individuals produced by these infectives are, by Equation (15),

I0,0 ⇒ S1A1I0,0 → S2A2I0,0 → · · · . (17)

The total number of secondary infections produced by 0th generation is thus

C0 = I0,0
∞∑
k=1

SkAk. (18)
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If

S0 = S1 = · · · , (19)

i.e. the susceptible population remains the same (whichwould literallymean that the newly
infected individual is immediately removed and replaced by a new susceptible, but prac-
tically that the population is large), and we set I0 = 1 and Iimported

0,0 = 0 in Equation (16),
then I0,0 = κ , and thus, by definition[14],

R0 ≡ κS0
∞∑
k=1

Ak. (20)

This is a discrete form of Equation (2).
Note.We could set I0 = 0 and Iimported

0,0 = 1, but we want to keep κ in the expression in
order to use an empirical law for I, which depends on the initial condition I0.

The sequence of infected individuals produced by one infective in a completely suscep-
tible population is thus, by Equation (17),

1 ⇒ κS0A1 → κS0A2 → · · · . (21)

Dividing each term of this sequence by Equation (20), we obtain the sequence of the
fractions of infected produced by one infected case:

w1,w2, · · · , (22)

where

wk ≡ Ak
∞∑
j=1

Aj

and
∞∑
k=1

wk = 1. (23)

Thus, wk can be interpreted as the probability that an infective individuals, produces
a new case at age k. Equation (23) is a discrete form of Equation (4), and thus, by
definition, the generation-time distribution. For more on generation time, see [40–42].
From Equations (20) and (23), we can express infectivity at age k as

Ak = R0
κS0

wk (24)

Substituting Equation (24) for Ak into Equation (15), and taking Iimported
n,0 = 0 and S0 =

S1 = · · · , we obtain

R0 = κIn,0
n∑

k=1
wkIn−k,0

. (25)

This formula cannot be used directly for calculation of R0 from observed incidences
because these are assumed to be produced only by the 0th generation in a wholly suscep-
tible population. Thus, to obtain the formula for computing of R0 from Equation (25), we
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assume that infection is a continuous process that in its initial phase is governed by the
exponential growth rate

I(t) = I0 ert , (26)

where I0 and r can be determined from observable data by regression analysis. Using
Equation (26) and integrating it over a single time interval, we obtain

In,0 = 1
tn+1 − tn

tn+1∫

tn

I(t)dt = I0

n+1∫

n

ertdt = κI0ern, (27)

where

κ = er − 1
r

. (28)

Substituting Equation (27) for In,0 and Equation (28) for κ into Equation (25), we obtain
Wallinga–Lipsitch formula [34]:

R0 = r

(er − 1)
n∑

k=1
wke−rk

. (29)

This is a discrete form of Equation (5). Note that calculation of R0 by Equation (29)
depends on n; however, practically wk = 0, for k > K, so we should take n = K. For more
on the calculation of R0 by Equation (29), see [35].

The effective reproduction number

By similar reasoning as in the previous section, we will derive the formula for calcula-
tion of the effective reproduction number R. For the nth generation, we have the following
transition process

In,0 ⇒ In+1,1 → In+2,2 → · · · .
Using Equation (12), the number of individuals who are still infective in the nth

generation is

In,0 ⇒ B1In,0 → B2In,0 → · · · .
The sequence of newly infected individuals generated by these infectives is

In,0 ⇒ Sn+1A1In,0 → Sn+2A2In,0 → · · · .

The total number of secondary infections generated by the nth generation is therefore

Cn =
∞∑
k=1

Sn+kAkIn,0. (30)

We have two possibilities regarding Sn. The first is that, similar to the calculation of the
R0 for the 0th generation, where the population of the initial number of susceptibles does
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not change, we assume that the current population of the susceptibles does not change

Sn = Sn+1 = · · · . (31)

If we insert this and In,0 = 1 into Equation (30), then we can define the instantaneous
reproduction number Rn as

Rn ≡ Sn
∞∑
k=1

Ak. (32)

This is a discrete analogue of Equation (8). From Equation (15), we have

Sn = Ilocaln,0
n∑

k=1
AkIn−k,0

(n = 1, 2, . . .), (33)

Extracting Ak from Equation (23) and substituting Equation (33) into (32), we obtain
the well-known Fraser formula [26]:

Rn = Ilocaln,0
n∑

k=1
wkIn−k,0

. (34)

In particular, if In,0 = 1 (or any other constant) for all n, then Rn → 1 as n → ∞. When
Ilocaln,0 = 0 for some n, then, for this n, we have Rn = 0. If wk = 1 for k = m and wk = 0
for all other k, i.e. an infected person is practically infectious for only one day, then Rn =
In,0/In−m,0. This relation can be used for a quick but crude estimate of Rn.

Equation (34) is a discrete form of Equation (10). Substituting Equation (24) into (32),
and taking κ = 1, we obtain

Rn = Sn
S0

R0. (35)

This is a well-known result for the SIR model [11]: the ratio of R and R0 represents the
fraction of susceptibles who are still in the population.

If we abandon condition (31) and put In,0 = 1 into Equation (30), then we can define
the case reproduction number Rc,n as

Rc,n ≡
∞∑
k=1

Sn+kAk. (36)

Using Equation (33) for Sn and substituting Equation (23) into (36), we obtain [26]

Rc,n =
∞∑
k=1

wkIlocaln+k,0
n∑
j=1

wjIn+k−j,0

=
∞∑
k=1

wkRn+k. (37)

We note that none of the formulas (29), (34) and (37), depend on the size of the initial
susceptible population. Thus, they can thus be used to calculate the reproduction number
from daily incidence reports once the distribution of generation time is known.
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Figure 1. Comparison of the case reproduction number calculated by Equation (37) and R0 package
using the Wallinga–Teunis method.

Examples

For practical calculation, we write a MATLAB programme using functions that are listed
in the Appendix. These functions assume wk = 0, k > K and In,0 = 0, n > N.

For a numerical example, we take data for Spanish influenza in Germany 1918–19 [43]
and compare results of this calculation with results obtained by the R0 package [35] and
the EpiEstim package [36].

In Figure 1, we see that the calculation of Rc by Equation (37) and those obtained by the
R0 package using the Wallinga–Teunis method [25] are practically identical; the absolute
difference is less than 10−7. The difference is noticeable towards the end of data; i.e. on the
length of the vector giving the generation time. Calculation of Rc by formula (37) implic-
itly assumes that Rc,n = 0; i.e. In,0 = 0 for n > N. In particular, this yields Rc,N = 0. The
calculation of Rc that includes only valid data is therefore limited to n < N − K.

In Figure 2, we see that the absolute difference between the calculation of instan-
taneous reproduction number by Equation (34) and by function estimate_R from the
EpiEstim package is in a range 10−2 to 10−1. The reason for the difference is that the
function estimate_R implements a formula for calculating Rt , which, for statistical reasons,
adds Gamma distribution parameters a in the numerator and 1/b in the denominator of
Equation (34) [36]. We note that this has a side effect: Rt > 0, even if It = 0; however, it
prevents the possibility of an undefined 0/0 case.
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Figure 2. Comparison of the instantaneous reproduction number calculated by Equation (34) and by
the function estimate_R from EpiEstim package.

Conclusion

We have shown that the well-known formulae for calculating the various epidemic repro-
duction numbers can be derived from the classical discrete Kermack–McKendrick epi-
demic model. An advantage of the model is that it is more intuitive and some of the
assumptions of the continuous model can be omitted. In particular, as already men-
tioned, the derivation does not require a factorization assumption on the epidemic’s
transmissibility.

The practical example shows that case reproduction number calculated by the formula
(37) gives numerically almost the same result as the reproduction number determined by
the algorithmically much more demanding Wallinga–Teunis method.
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Appendix

MATLAB functions for calculation of the reproduction number.

function R0 = calcR0(w,r)
%CALCR0 Calculate basic reproduction number (Eq 29)

R0 = r/((exp(r) - 1)∗sum(w.∗exp(-r∗(1:length(w)))));
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end

function R = calcR(w,I)
%CALCR Calculate instantaneous reproduction number (Eq 34)

K = length(w);
N = length(I);
R = NaN(N,1);
for n = 1:N

s = 0;
for k = 1:min(n,K)

s = s + w(k)∗I(n+1-k);
end
if s > 0

R(n) = I(n)/s;
end

end
end

function [Rc,R] = calcRc(w,I)
%CALCRC Calculate case reproduction number (Eq 37)

R = calcR(w,I);
K = length(w);
N = length(I);
Rc = NaN(N,1);
for n = 1:N

s = 0;
for k = 1:min(N-n+1,K)

s = s + w(k)∗R(n+k-1);
end
Rc(n) = s;

end
end
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